求方阵幂的方法:设要求方阵A的n次幂,且A=Q^(-1)*Λ*Q,其中Q为可逆阵,Λ为对角阵,即A可以相似对角化,那么此时,有求幂公式:A^n=Q^(-1)*(Λ)^n*Q,而对角阵求n次方,只需要每个对角元素变为n次方即可,这样就可以快速求出二阶方阵A的高次幂。方阵,是一个按照长方阵列排列的复数或实数***,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵乘法一般没有交换律,推不出你那个结论,随便找几个二阶矩阵试试就明白了。