基本不等式 :如果a、b都为实数,那么a^2 + b^2 ≥ 2 ab,当且仅当a = b 时等号成立 证明: ∵ (a-b)^2 ≥ 0 ∴ a^2 + b^2 - 2 ab ≥ 0 ∴ a^2 + b^2 ≥ 2 ab 证毕。