问答网

当前位置: 首页 > 知识问答 > 广义四元数群的非循环子群

广义四元数群的非循环子群

知识问答 浏览3次

数学上,克莱因(Klein)四元群,这个定义是在1884年被菲利克斯·克莱因命名的,它是最小的非循环群。有4个元素,除单位元外其阶均为2。 克莱因四元群通常以V表示或K4表示,意为Z2×Z2,(来自德文的四元群Vierergruppe)。它也是阿贝尔群,就是2阶的循环群与自身的直积。它也同构于4阶的二面体群。