答案是(1/√5)*{[(1+√5)/2]^(10+2) - [(1-√5)/2]^(10+2)}=144种。
求递推数列a⑴=1,a(n+1)=1+1/a(n)的通项公式
由数学归纳法可以得到:a(n)=F(n+1)/F(n),将斐波那契数列的通项式代入,化简就得结果。通项公式却是用无理数来表达的。而且当n趋向于无穷大时,前一项与后一项的比值越来越逼近黄金分割0.618(或者说后一项与前一项的比值小数部分越来越逼近0.618)。
1÷1=1,1÷2=0.5,2÷3=0.666...,3÷5=0.6,5÷8=0.625…………,55÷89=0.617977……………144÷233=0.618025…46368÷75025=0.6180339886…...
越到后面,这些比值越接近黄金比
公式如下:一、递归公式: a1=1; a2=1; a(n)=a(n-1)+a(n-2)(n>=3)
二、通项公式: a(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
三、证明过程:(方法:数学归纳)
1。当n=1时,a1=1,例题成立;
2。设当n=k时,命题成立,即: a(k)=(1/√5)*{[(1+√5)/2]^k - [(1-√5)/2]^k}那么,当n=k+1时,有: a(k+1)=(1/√5)*{[(1+√5)/2]^k - [(1-√5)/2]^k}+ (1/√5)*{[(1+√5)/2]^(k-1) - [(1-√5)/2]^(k-1)}为了写法方便,令c=(1/√5),A=(1+√5)/2,B=(1-√5)/2,
于是上式为: a(k+1)=c(A^k+A^(k-1)-B^k-B^(k-1)) =c(A^(k-1)(1+A)-B^(k-1)(1+B))其中,1+A=A^2,1+B=B^2;
于是上式为: a(k+1)=c(A^(k+1)-B(K+1)) =(1/√5)*{[(1+√5)/2]^(k+1) - [(1-√5)/2]^(k+1)}
:(n)=a(n-1)+a(n-2)。斐波那契数列(Fibonaccisequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(LeonardodaFibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”。
数列(sequenceofnumber),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在靠前位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。