对称轴求法
y=ax^2;+bx+c (a≠0)
当△≥0时:
x^1+x^2= -b/a x^1=x^2
对称轴x=-b/2a
当△<0时:
a>0时 y>0,a<0时 y<0,y≠0
ax^2;+bx+c-y=0 △≥0
对称轴x=-b/2a
y=ax^2+bx+c 关于x轴对称:
y变为相反数,x不变:
y=a(-x)^2+b(-x)+c
即:y=ax^2-bx+c
求y=ax^2+bx+c关于y轴对称也是如此
总结:
当将所有的数值都带入图像中是会找出一条将它们对称平分的线,那条线就是函数的对称轴。
拓展资料:
二次函数对称轴指的是当二次函数有最值(a>0时,开口向上,有最小值;a<0时,开口向下,有最大值)时,自变量x所在的直线。这条直线就叫做而做函数对称轴。
求函数的对称轴y=sinx对称轴为x=kπ+π/2,k为整数,对称中心为(kπ,0),k为整数。y=cosx对称轴为x=kπ,k为整数,对称中心为(kπ+π/2,0),k为整数。y=tanx对称中心为(kπ,0),k为整数,无对称轴。
对于正弦型函数y=Asin(ωx+Φ),令ωx+Φ=kπ+π/2解出x即可求出对称轴,令ωx+Φ=kπ,解出的x就是对称中心的横坐标,纵坐标为0。(若函数是y=Asin(ωx+Φ)+k的形式,那此处的纵坐标为k)余弦型,正切型函数类似。