问答网

当前位置: 首页 > 知识问答 > 函数有界和无界的证明

函数有界和无界的证明

知识问答 浏览3次

假定f是D->R的函数,如果存在实数M使得f(x)<=M对一切x∈D成立,那么称f有上界,M是f的一个上界。

类似地,如果存在实数m使得f(x)>=m对一切x∈D成立,那么称f有下界,m是f的一个下界。

如果f既有上界又有下界,那么称f有界,否则称f无界

函数有界性的充分必要条件是必须既有上界,又有下界。因为这是有界函数的定义。也就是说规定了这样的函数才是有界函数。

解题过程如下:

设函数f(x)在数集X有定义

试证:函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界。证明:

充分性:若f(x)上界 M 下界N

则:|f(x)|<=Max{M,N}。